# LINEAR COMBINATION BASED IMPUTATION METHOD FOR MISSING DATA IN SAMPLE 

D. Shukla<br>Deptt. of Mathematics and Statistics, Dr. H. S. Gour Central University, Sagar , M.P. - 470003, INDIA<br>Narendra Singh Thakur<br>Centre for Mathematical Sciences (CMS), Banasthali University, Rajasthan-304022, INDIA<br>Dharmendra Singh Thakur<br>School of Excellence, Sagar, M.P.- 470002, INDIA<br>Sharad Pathak<br>Deptt. of Mathematics and Statistics, Dr. H. S. Gour Central University, Sagar , M.P. - 470003, INDIA


#### Abstract

To estimate the population mean using auxiliary variable there are many estimators available in literature like- ratio, product, regression, dual-to-ratio estimator and so on. Suppose that all the information of the main variable is present in the sample but only a part of data of the auxiliary variable is available. Then, in this case none of the above estimators could be used. This paper presents an imputation based factor-type class of estimation strategy for population mean in presence of missing values of auxiliary variables. The non-sampled part of the population is used as an imputation technique in the proposed class. Some properties of estimators are discussed and numerical study is performed with efficiency comparison to the non-imputed estimator. An optimum sub-class is recommended.


Keywords: Imputation, Non-response, Post-stratification, Simple Random Sampling without Replacement (SRSWOR), Respondents (R).

### 1.0 INTRODUCTION:

In sampling theory, the problem of mean estimation of a population is considered by many authors like Srivastava and Jhajj (1980, 81), Sahoo (1984, 1986), Singh (1986), Singh, Upadhayaya and Iachan (1987), Singh and Singh (1991), Singh et al. (1994), Sahoo et al. (1995), Sahoo and Sahoo (2001), Singh and Singh (2001), Sometimes, in survey situations a small part of sample remains non-responded (or incomplete) due to many practical reasons. Techniques and estimation procedures are needed to develop for this purpose. The imputation is a well defined methodology by virtue of which this kind of problem could be partially solved. Ahmed et al. (2006), Rao and Sitter (1995), Rubin (1976) and Singh and Horn (2000) have given applications of various imputation procedures. Hinde and Chambers (1990) studied the non-response imputation with multiple source of non-response. The problem of nonresponse in sample surveys immensely looked into by Hansen and Hurwitz (1946), Grover and Couper (1998), Jackway and Boyce (1987), Khare (1987), Khot (1994), Lessler and Kalsbeek (1992).

When the "response" and "non-response" part of the sample is assumed into two groups, it is closed to call upon as post-stratification. Estimation problem in sample survey, in the setup of post-stratification, under nonresponse situation is studied due to Shukla and Dubey (2001, 2004, and 2006). Some other useful contributions to this area are by Holt and Smith (1979), Jagers et al. (1985), Jagers (1986), Smith (1991), Agrawal and Panda (1993), Shukla and Trivedi (1999, 2001, 2006), Wywial (2001), Shukla et al. (2002, 2006), Shukla and Thakur (2008), Shukla et al. (2009a), Shukla et al. (2009b). When a sample is full of response over main variable but some of auxiliary values are missing, it is hard to utilize the usual estimators. Traditionally, it is essential to estimate those missing observations first by some specific estimation techniques. One can think of utilizing the non-sampled part of the population in order to get estimates of missing observations in the sample. These estimates could be imputed into actual estimation procedures used for the population mean. The content of this research work takes into account the similar aspect for nonresponding values of the sample assuming post-stratified setup and utilizing the auxiliary source of data.
www.ijmer.com

### 1.1 SYMBOLS AND SETUP:

Let $U=\left(U_{1}, U_{2}, \ldots \ldots \ldots ., U_{N}\right)$ be a finite population of $N$ units with $Y$ as a main variable and $X$ the auxiliary variable. The population has two types of individuals like $N_{1}$ as number of "respondents (R)" and $\mathrm{N}_{2}$ "nonrespondents (NR)", $\left(N=N_{1}+N_{2}\right)$. Their population proportions are expressed like $W_{1}=N_{1} / N$ and $W_{2}=N_{2} / N$. Quantities $W_{1}$ and $W_{2}$ could be guessed by past data or by experience of the investigator. Further, let $\bar{Y}$ and $\bar{X}$ be the population means of $Y$ and $X$ respectively. In what follows following are symbols:

R-group : Respondents group or group of those who responses in survey.
$\bar{Y}_{1} \quad: \quad$ Population mean of R-group of $Y$.
$\bar{Y}_{2} \quad: \quad$ Population mean of NR-group of $Y$.
$\bar{X}_{1} \quad: \quad$ Population mean of R-group of $X$.
$\bar{X}_{2} \quad: \quad$ Population mean of NR-group of $X$.
$S_{1 Y}^{2} \quad: \quad$ Population mean square of R-group of $Y$.
$S_{2 Y}^{2} \quad: \quad$ Population mean square of NR-group of $Y$.
$S_{1 X}^{2} \quad: \quad$ Population mean square of R-group of $X$.
$S_{2 X}^{2} \quad: \quad$ Population mean square of NR-group of $X$.
$C_{1 Y} \quad: \quad$ Coefficient of Variation of $Y$ in R-group.
$C_{2 Y} \quad: \quad$ Coefficient of Variation of $Y$ in NR-group.
$C_{1 X} \quad: \quad$ Coefficient of Variation of $X$ in R-group.
$C_{2 X} \quad: \quad$ Coefficient of Variation of $X$ in NR-group.
$\rho \quad: \quad$ Correlation Coefficient in population between $X$ and $Y$.
$n \quad: \quad$ Sample size from population of size $N$ by SRSWOR.
$n_{1} \quad: \quad$ Post-stratified sample size coming from R-group.
$n_{2} \quad: \quad$ Post-stratified sample size from NR-group.
$\bar{y}_{1} \quad: \quad$ Sample mean of $Y$ based on $n_{1}$ observations of R-group.
$\bar{y}_{2} \quad: \quad$ Sample mean of $Y$ based on $n_{2}$ observations of NR-group.
$\bar{x}_{1} \quad: \quad$ Sample mean of $X$ based on $n_{1}$ observations of R-group.
$\bar{x}_{2} \quad:$ Sample mean of $X$ based on $n_{2}$ observations of NR-group.
$\rho_{1} \quad: \quad$ Correlation Coefficient of population of R-group.
$\rho_{2} \quad$ : Correlation Coefficient of population of NR-group.

Further, consider few more symbolic representations:

$$
\begin{aligned}
& D_{1}=E\left(\frac{1}{n_{1}}\right)=\left[\frac{1}{n W_{1}}+\frac{(N-n)\left(1-W_{1}\right)}{(N-1) n^{2} W_{1}^{2}}\right] ; \quad D_{2}=E\left(\frac{1}{n_{2}}\right)=\left[\frac{1}{n W_{2}}+\frac{(N-n)\left(1-W_{2}\right)}{(N-1) n^{2} W_{2}^{2}}\right] \\
& \bar{Y}=\frac{N_{1} \bar{Y}_{1}+N_{2} \bar{Y}_{2}}{N} ; \quad \bar{X}=\frac{N_{1} \bar{X}_{1}+N_{2} \bar{X}_{2}}{N}
\end{aligned}
$$

Population $\left(N=N_{1}+N_{2}\right)$


Fig: 1.1

### 2.0 ASSUMPTIONS :

Consider following in light of figure 1.1 before formulating an imputation based estimation procedure:

1. The sample of size $n$ is drawn by SRSWOR and post-stratified into two groups of size $n_{1}$ and $n_{2}\left(n_{1}+n_{2}=\right.$ $n$ ) according to R and NR group respectively
2. The information about $Y$ variable in sample is completely available.
3. The sample means of both groups $\bar{y}_{1}$ and $\bar{y}_{2}$ are known such that

$$
\bar{y}=\frac{n_{1} \bar{y}_{1}+n_{2} \bar{y}_{2}}{n} \quad \text { which is sample mean on } n \text { units. }
$$

4. The population means $\overline{X_{1}}$ and $\bar{X}$ are known.
5. The population size $N$ and sample size $n$ are known. Also, $N_{1}$ and $N_{2}$ are known by past data, past experience or by guess of the investigator $\left(N_{1}+N_{2}=N\right)$.
6. The sample mean of auxiliary information $\bar{x}_{1}$ is only known for R-Group, but information about $\bar{x}_{2}$ of NR-group is missing. Therefore

$$
\bar{x}=\frac{n_{1} \bar{x}_{1}+n_{2} \bar{x}_{2}}{n} \text { could not be obtained due to absence of } \bar{x}_{2} .
$$

7. Other population parameters are assumed known, in either exact or in ratio from except the $\bar{Y}, \bar{Y}_{1}$ and $\bar{Y}_{2}$.

### 3.0 PROPOSED CLASS OF ESTIMATION STRATEGY:

To estimate population mean $\bar{Y}$, in setup of fig. 1.1, a problem to face is of missing observations related to $\bar{x}_{2}$, therefore, usual ratio, product and regression estimators are not applicable. Singh and Shukla (1987) have proposed a factor type estimator for estimating population mean $\bar{Y}$. Shukla et al. (1991), Singh and Shukla (1993), Shukla (2002) have also discussed properties of factor-type estimators applicable for estimating population mean. But all these cannot be useful due to unknown information $\bar{x}_{2}$. In order to solve this, an imputation $\left(\bar{x}_{2}^{*}\right)_{5}$ is adopt as define,

$$
\begin{equation*}
\left(\bar{x}_{2}^{*}\right)_{5}=\left[\frac{N \bar{X}-n\left\{f \overline{X_{1}}+(1-f) \bar{x}_{2}^{*}\right\}}{N-n}\right] \tag{3.1}
\end{equation*}
$$

where, $\quad \overline{x_{2}^{*}}=\left[\frac{N \bar{X}-n \overline{x_{1}}}{N-n}\right]$.
The logic for this imputation is to utilize the non-sampled part of the population of $X$ for obtaining an estimate of missing $\bar{x}_{2}$ and generate $\bar{x}^{(5)}$ for $\bar{x}$ as describe below :

$$
\begin{equation*}
\bar{x}^{(5)}=\left[\frac{N_{1} \overline{x_{1}}+N_{2}\left(-\bar{x}_{2}^{*}\right)_{5}}{N_{1}+N_{2}}\right] \tag{3.2}
\end{equation*}
$$

The proposed imputation based class of factor-type estimator is

$$
\begin{equation*}
\left[\left(\bar{y}_{F T}\right)_{E}\right]_{k}=\left(\frac{N_{1} \overline{y_{1}}+N_{2} \overline{y_{2}}}{N}\right)\left[\frac{(A+C) \bar{X}+f B \bar{x}^{-(5)}}{(A+f B) \bar{X}+C \bar{x}^{-(5)}}\right] \tag{3.3}
\end{equation*}
$$

where, $0<k<\infty$ and $k$ is a constant and

$$
A=(k-1)(k-2) ; \quad B=(k-1)(k-4) ; C=(k-2)(k-3)(k-4) ; \quad f=n / N .
$$

### 4.0 LARGE SAMPLE APPROXIMATION :

Consider the following for large $n$ :

$$
\left.\begin{array}{l}
\bar{y}_{1}=\bar{Y}_{1}\left(1+e_{1}\right) \\
\bar{y}_{2}=\bar{Y}_{2}\left(1+e_{2}\right) \\
\bar{x}_{1}=\bar{X}_{1}\left(1+e_{3}\right)  \tag{4.1}\\
\bar{x}_{2}=\bar{X}_{2}\left(1+e_{4}\right)
\end{array}\right\}
$$

where, $e_{1}, e_{2}, e_{3}$ and $e_{4}$ are very small numbers and $\left|e_{i}\right|<1 \quad(i=1,2,3,4)$.
Using the basic concept of SRSWOR and the concept of post-stratification of the sample $n$ into $n_{1}$ and $n_{2}$ [see Cochran (2005), Hansen et al. (1993), Sukhatme et al. (1984), Singh and Choudhary (1986), Murthy (1976)], we get

$$
\left.\begin{array}{l}
\mathrm{E}\left(e_{1}\right)=\mathrm{E}\left[\mathrm{E}\left(e_{1}\right) \mid n_{1}\right]=0 \\
\mathrm{E}\left(e_{2}\right)=\mathrm{E}\left[\mathrm{E}\left(e_{2}\right) \mid n_{2}\right]=0 \\
\mathrm{E}\left(e_{3}\right)=\mathrm{E}\left[\mathrm{E}\left(e_{3}\right) \mid n_{1}\right]=0 \\
\mathrm{E}\left(e_{4}\right)=\mathrm{E}\left[\mathrm{E}\left(e_{4}\right) \mid n_{2}\right]=0
\end{array}\right\}
$$

Assume the independence of R-group and NR-group representation in the sample, the following expression could be obtained:

$$
\begin{align*}
\mathrm{E}\left[e_{1}^{2}\right] & =\mathrm{E}\left[\mathrm{E}\left(e_{1}^{2}\right) \mid n_{1}\right] \\
& =\mathrm{E}\left[\left.\left\{\left(\frac{1}{n_{1}}-\frac{1}{N}\right) C_{1 Y}^{2}\right\}\right|_{1}\right] \\
& =\left[\left\{\mathrm{E}\left(\frac{1}{n_{1}}\right)-\frac{1}{N}\right\} C_{1 Y}^{2}\right] \\
& =\left[\left(D_{1}-\frac{1}{N}\right) C_{1 Y}^{2}\right]
\end{align*}
$$

$$
\begin{align*}
\mathrm{E}\left[e_{2}^{2}\right] & =\mathrm{E}\left[E\left(\mathrm{e}_{2}^{2}\right) \mid n_{2}\right] \\
& =\mathrm{E}\left[\left.\left\{\left(\frac{1}{n_{2}}-\frac{1}{N}\right) C_{2 Y}^{2}\right\} \right\rvert\, n_{2}\right] \\
& =\left[\left(D_{2}-\frac{1}{N}\right) C_{2 Y}^{2}\right]  \tag{4.4}\\
\mathrm{E}\left[e_{3}^{2}\right]= & \mathrm{E}\left[\mathrm{E}\left(e_{3}^{2}\right) \mid n_{1}\right] \\
& =\left[\left(D_{1}-\frac{1}{N}\right) C_{1 X}^{2}\right]  \tag{4.5}\\
\mathrm{E}\left[e_{4}^{2}\right] & =\left[\left(D_{2}-\frac{1}{N}\right) C_{2 X}^{2}\right]  \tag{4.5.1}\\
\mathrm{E}\left[e_{1} e_{3}\right] & =\mathrm{E}\left[\mathrm{E}\left(e_{1} e_{3}\right) \mid n_{1}\right] \\
& =\mathrm{E}\left[\left.\left\{\left(\frac{1}{n_{1}}-\frac{1}{N}\right) \rho_{1} C_{1 Y} C_{1 X}\right) \right\rvert\, n_{1}\right] \\
& =\left[\left(D_{1}-\frac{1}{N}\right) \rho_{1} C_{1 Y} C_{1 X}\right]  \tag{4....}\\
\mathrm{E}\left[e_{1} e_{2}\right] & =\mathrm{E}\left[\mathrm{E}\left(e_{1} e_{2}\right) \mid n_{1}, n_{2}\right]=0  \tag{4.7}\\
\mathrm{E}\left[e_{1} e_{4}\right] & =0  \tag{4.7.1}\\
\mathrm{E}\left[e_{2} e_{3}\right] & =\mathrm{E}\left[\mathrm{E}\left(e_{2} e_{3}\right) \mid n_{1}, n_{2}\right]=0  \tag{4....}\\
\mathrm{E}\left[e_{2} e_{4}\right] & =\left(D_{2}-\frac{1}{N}\right) \rho_{2} C_{2 Y} C_{2 X}  \tag{4.8.1}\\
\mathrm{E}\left[e_{3} e_{4}\right] & =0
\end{align*}
$$

and

The expression (4.7), (4.7.1), (4.8) and (4.8.2) are true under the assumption of independent representation of R-group and NR-group units in the sample. This is introduced to simplify mathematical expressions.

THEOREM 4.1: The estimator $\left[\left(\bar{y}_{F T}\right)_{E}\right]_{k}$ could be expressed under large sample approximation in following form :

$$
\left[\left(\bar{y}_{F T}\right)_{E}\right]_{k}=\delta_{4} \bar{Y}\left[1+s_{1} W_{1} e_{1}+s_{2} W_{2} e_{2}\right]\left[1+\left(\alpha_{4}-\beta_{4}\right) e_{3}-\left(\alpha_{4}-\beta_{4}\right) \beta_{4} e_{3}^{2}+\left(\alpha_{4}-\beta_{4}\right) \beta_{4}^{2} e_{3}^{3}-\ldots .\right]
$$

PROOF : Rewrite $\left(\stackrel{-}{x}_{2}\right)_{5}$ as in (3.1):

$$
\left(\overline{x_{2}^{*}}\right)_{5}=\frac{N \bar{X}-n\left\{f \overline{X_{1}}+(1-f) \bar{x}_{2}^{*}\right\}}{N-n}
$$

where $\quad \overline{x_{2}^{*}}=\frac{N \bar{X}-n \overline{x_{1}}}{N-n}$

$$
\begin{aligned}
\left(\overline{x_{2}^{*}}\right)_{5} & =\frac{1}{N-n}\left[N \bar{X}-n\left\{f \bar{X}_{1}+(1-f)\left(\frac{N \bar{X}-n \overline{x_{1}}}{N-n}\right)\right\}\right] \\
& =\left[N(N-n) \bar{X}-n(N-n) f \overline{X_{1}}-n(1-f)\left\{N \bar{X}-n \bar{x}_{1}\right\}\right] /(N-n)^{2} \\
& =\left[\{N(N-n)-N n(1-f) f\} \bar{X}-n(N-n) f \bar{X}_{1}+n^{2}(1-f) \bar{X}_{1}+n^{2}(1-f) \bar{X}_{1} e_{3}\right](N-n)^{-2}
\end{aligned}
$$

Here,
(i) $N(N-n)-N n(1-f)=N(N-n)-\mathrm{Nn}\left(1-\frac{n}{N}\right)=(N-n)(N-n)$
(ii) $n(N-n) f+n^{2}(1-f)=\frac{n^{2}}{N}(N-n)+n^{2}\left(1-\frac{n}{N}\right)=\frac{2 n^{2}(N-n)}{N}=2 n f(N-n)$
(iii) $n^{2}(1-f)=n f(N-n)$

Therefore, $\quad\left(\overline{x_{2}^{*}}\right)_{5}=\frac{(N-n) \bar{X}-2 n f \overline{X_{1}}+n f \overline{X_{1}} e_{3}}{N-n}$
We have, from (3.2)

$$
\bar{x}^{(5)}=\frac{N_{1} \overline{x_{1}}+N_{2}\left(\overline{x_{2}^{*}}\right)_{5}}{N}
$$

by putting the value of $\left(\bar{x}_{2}^{*}\right)_{5}$ from (4.9) and solving

$$
\begin{align*}
\bar{x}^{-(5)} & =\left[\frac{(N-n) N_{1} \bar{X}_{1}\left(1+e_{3}\right)+N_{2}\left[(N-n) \bar{X}-2 n f \bar{X}_{1}+n f \bar{X}_{1} e_{3}\right]}{N(N-n)}\right] \\
& =W_{1} \overline{X_{1}}\left(1+e_{3}\right)+\left[\frac{N_{2}}{N(N-n)}\left\{(N-n) \bar{X}-2 n f \overline{X_{1}}+n f \overline{X_{1}} e_{3}\right\}\right] \\
& =W_{1} \bar{X}_{1}+W_{1} \bar{X}_{1} e_{3}+\left[W_{2} \bar{X}-2 p f^{2} \overline{X_{1}}+p f^{2} \overline{X_{1}} e_{3}\right] \\
& =W_{2} \bar{X}+\left(W_{1}-2 p f^{2}\right) \overline{X_{1}}+\left(W_{1}+p f^{2}\right) \overline{X_{1}} e_{3} \\
& =\bar{X}\left[\left\{W_{2}+\left(W_{1}-2 p f^{2}\right) r_{1}\right\}+\left(W_{1}+p f^{2}\right) r_{1} e_{3}\right] \\
\bar{x}^{(5)} & =\bar{X}\left[t+u e_{3}\right] \tag{4.10}
\end{align*}
$$

where, $\quad t=W_{2}+\left(W_{1}-2 p f^{2}\right) r_{1} ; \quad u=\left(W_{1}+p f^{2}\right) r_{1} ; \quad p=\frac{N_{2}}{N-n}$.

$$
\text { Now, the estimator }\left[\left(\bar{y}_{F T}\right)_{E}\right]_{k} \text { under approximation and using (4.10) will be }
$$

$$
\begin{aligned}
& {\left[\left(\bar{y}_{F T}\right)_{E}\right]_{k}=\left(\frac{N_{1} \bar{y}_{1}+N_{2} \overline{y_{2}}}{N}\right)\left[\frac{(A+C) \bar{X}+f B \bar{x}^{-(5)}}{(A+f B) \bar{X}+C \bar{x}^{(5)}}\right]} \\
& \quad=\left[\frac{N_{1} \bar{Y}_{1}\left(1+e_{1}\right)+N_{2} \bar{Y}_{2}\left(1+e_{2}\right)}{N}\right]\left[\frac{(A+C) \bar{X}+f B\left(t+u e_{3}\right) \bar{X}}{(A+f B) \bar{X}+C\left(t+u e_{3}\right) \bar{X}}\right] \\
& \quad=\bar{Y}\left[1+s_{1} W_{1} e_{1}+s_{2} W_{2} e_{2}\right]\left[\frac{(A+f B t+C)+f B u e_{3}}{(A+f B+C t)+C u e_{3}}\right] \\
& \quad=\bar{Y}\left[1+s_{1} W_{1} e_{1}+s_{2} W_{2} e_{2}\right]\left[\frac{\mu_{1}+\mu_{2} e_{3}}{\mu_{3}+\mu_{4} e_{3}}\right] \\
& \quad=\delta_{4} \bar{Y}\left[1+s_{1} W_{1} e_{1}+s_{2} W_{2} e_{2}\right]\left(1+\alpha_{4} e_{3}\right)\left(1+\beta_{4} e_{3}\right)^{-1}
\end{aligned}
$$

where $\quad \mu_{1}=A+f B t+C ; \quad \mu_{2}=f B u ; \quad \mu_{3}=A+f B+C t ; \quad \mu_{4}=C u ;$

$$
r_{1}=\frac{\overline{X_{1}}}{\bar{X}} ; r_{2}=\frac{\overline{X_{2}}}{\bar{X}} ; \quad s_{1}=\frac{\overline{Y_{1}}}{\bar{Y}} ; \quad s_{2}=\frac{\overline{Y_{2}}}{\bar{Y}} ; \alpha_{4}=\frac{\mu_{2}}{\mu_{1}} ; \quad \beta_{4}=\frac{\mu_{4}}{\mu_{3}} ; \quad \delta_{4}=\frac{\mu_{1}}{\mu_{3}} ;
$$

We can further express the above into following:
$\left[\left(\bar{y}_{F T}\right)_{E}\right]_{k}=\delta_{4} \bar{Y}\left[1+s_{1} W_{1} e_{1}+s_{2} W_{2} e_{2}\right]\left(1+\alpha_{4} e_{3}\right)\left(1-\beta_{4} e_{3}+\beta_{4}^{2} e_{3}^{2}-\ldots \ldots.\right)$

$$
=\delta_{4} \bar{Y}\left[1+s_{1} W_{1} e_{1}+s_{2} W_{2} e_{2}\right]\left[\left(1-\beta_{4} e_{3}+\beta_{4}^{2} e_{3}^{2}-\ldots .\right)+\left(\alpha_{4} e_{3}-\alpha_{4} \beta_{4} e_{3}^{2}+\alpha_{4} \beta_{4}^{2} e_{3}^{3} \ldots \ldots . .\right)\right]
$$

$\left[\left(\bar{y}_{F T}\right)_{E}\right]_{k}=\delta_{4} \bar{Y}\left[1+s_{1} W_{1} e_{1}+s_{2} W_{2} e_{2}\right]\left[1+\left(\alpha_{4}-\beta_{4}\right) e_{3}-\left(\alpha_{4}-\beta_{4}\right) \beta_{4} e_{3}^{2}+\ldots ..\right]$

### 5.0 BIAS AND MEAN SQUARED ERROR :

Define $\mathrm{E}($.$) for expectation, \mathrm{B}($.$) for bias and \mathrm{M}($.$) for mean squared error, then the$ first order of approximations could be established; for $i, j=1,2,3, \ldots$. as

$$
\begin{array}{ll}
\mathrm{E}\left[e_{1}^{i} e_{2}^{j}\right]=0 & \text { when } i+j>2 \\
\mathrm{E}\left[e_{1}^{i} e_{3}^{j}\right]=0 & \text { when } i+j>2  \tag{5.1}\\
\mathrm{E}\left[e_{2}^{i} e_{3}^{j}\right]=0 & \text { when } i+j>2
\end{array}
$$

THEOREM 5.1: The $\left[\left(\bar{y}_{F T}\right)_{E}\right]_{k}$ is a biased estimator of $\bar{Y}$ with the amount of bias to the first order of approximation:

$$
\mathrm{B}\left[\left(\bar{y}_{F T}\right)_{E}\right]_{k}=\bar{Y}\left[\left(\delta_{4}-1\right)-\delta_{4} C_{1 X}\left(\alpha_{4}-\beta_{4}\right)\left(D_{1}-\frac{1}{N}\right)\left\{\beta_{4} C_{1 X}-s_{1} W_{1} \rho_{1} C_{1 Y}\right\}\right]
$$

PROOF: $\mathrm{B}\left[\left(\bar{y}_{F T}\right)_{E}\right]_{k}=\mathrm{E}\left[\left\{\left(\bar{y}_{F T}\right)_{E}\right\}_{k}-\bar{Y}\right]$
Using theorem 4.1 and taking expectations
$\mathrm{E}\left[\left(\bar{y}_{F T}\right)_{E}\right]_{k}=\delta_{4} \bar{Y} \mathrm{E}\left[1+\left(\alpha_{4}-\beta_{4}\right) e_{3}-\left(\alpha_{4}-\beta_{4}\right) \beta_{4} e_{3}^{2}+s_{1} W_{1} e_{1}\left\{1+\left(\alpha_{4}-\beta_{4}\right) e_{3}-\left(\alpha_{4}-\beta_{4}\right) \beta_{4} e_{3}^{2}\right\}\right.$

$$
\begin{aligned}
& \left.\quad+s_{2} W_{2} e_{2}\left\{1+\left(\alpha_{4}-\beta_{4}\right) e_{3}-\left(\alpha_{4}-\beta_{4}\right) \beta_{4} e_{3}^{2}\right\}\right] \\
= & \delta_{4} \bar{Y}\left[1-\left(\alpha_{4}-\beta_{4}\right) \beta_{4} \mathrm{E}\left(e_{3}^{2}\right)+s_{1} W_{1}\left(\alpha_{4}-\beta_{4}\right) \mathrm{E}\left(e_{1} e_{3}\right)+s_{2} W_{2}\left(\alpha_{4}-\beta_{4}\right) \mathrm{E}\left(e_{2} e_{3}\right)\right] \\
= & \delta_{4} \bar{Y}\left[1-\left(\alpha_{4}-\beta_{4}\right) \beta_{4}\left(D_{1}-\frac{1}{N}\right) C_{1 X}^{2}+\left(\alpha_{4}-\beta_{4}\right) s_{1} W_{1}\left(D_{1}-\frac{1}{N}\right) \rho_{1} C_{1 Y} C_{1 X}\right] \\
= & \delta_{4} \bar{Y}\left[1-\left(\alpha_{4}-\beta_{4}\right)\left(D_{1}-\frac{1}{N}\right) C_{1 X}\left\{\beta_{4} C_{1 X}-s_{1} W_{1} \rho_{1} C_{1 Y}\right\}\right]
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\mathrm{B}\left[\left(\bar{y}_{F T}\right)_{E}\right]_{k} & =\mathrm{E}\left[\left\{\left(\bar{y}_{F T}\right)_{E}\right\}_{k}-\bar{Y}\right] \\
& =\bar{Y}\left[\left(\delta_{4}-1\right)-\delta_{4} C_{1 X}\left(\alpha_{4}-\beta_{4}\right)\left(D_{1}-\frac{1}{N}\right)\left\{\beta_{4} C_{1 X}-s_{1} W_{1} \rho_{1} C_{1 Y}\right\}\right]
\end{aligned}
$$

THEOREM 5.2: The mean squared error of $\left[\left(\bar{y}_{F T}\right)_{E}\right]_{k}$ is
$\mathrm{M}\left[\left(\bar{y}_{F T}\right)_{E}\right]_{k}=$

$$
\bar{Y}^{2}\left[\left(\delta_{4}-1\right)^{2}+\left(D_{1}-\frac{1}{N}\right)\left\{I_{1} s_{1}^{2} C_{1 Y}^{2}+I_{2} C_{1 X}^{2}+2 I_{3} s_{1} \rho_{1} C_{1 Y} C_{1 X}\right\}+\left(D_{2}-\frac{1}{N}\right) \delta_{4}^{2} s_{2}^{2} W_{2}^{2} C_{2 Y}^{2}\right]
$$

where $\quad I_{1}=\delta_{4}^{2} W_{1}^{2} ; \quad I_{2}=\delta_{4}\left(\alpha_{4}-\beta_{4}\right)\left\{\delta_{4}\left(\alpha_{4}-\beta_{4}\right)-2\left(\delta_{4}-1\right) \beta_{4}\right\}$;

$$
I_{3}=W_{1} \delta_{4}\left(2 \delta_{4}-1\right)\left(\alpha_{4}-\beta_{4}\right)
$$

www.ijmer.com
Vol.1, Issue. 2 (Nov. 2011), pp-580-596
PROOF: $\quad \mathrm{M}\left[\left(\bar{y}_{F T}\right)_{E}\right]_{k}=\mathrm{E}\left[\left\{\left(\bar{y}_{F T}\right)_{E}\right\}_{k}-\bar{Y}\right]^{2}$
Using theorem 4.1, we can express
$\mathrm{M}\left[\left(\bar{y}_{F T}\right)_{E}\right]_{k}=\mathrm{E}\left[\delta_{4} \bar{Y}\left\{1+s_{1} W_{1} e_{1}+s_{2} W_{2} e_{2}\right\}\left\{1+\left(\alpha_{4}-\beta_{4}\right) e_{3}-\left(\alpha_{4}-\beta_{4}\right) \beta_{4} e_{3}^{2}+\left(\alpha_{3}-\beta_{4}\right) \beta_{4} e_{3}^{3} \ldots\right\}-\bar{Y}\right]^{2}$
Using large sample approximations of (5.1) we could express

$$
\begin{aligned}
= & \bar{Y}^{2} \mathrm{E}\left[\left(\delta_{4}-1\right)+\delta_{4}\left\{\left(\alpha_{4}-\beta_{4}\right) e_{3}-\left(\alpha_{4}-\beta_{4}\right) \beta_{4} e_{3}^{2}\right.\right. \\
& \left.\left.\quad+\left(s_{1} W_{1} e_{1}+s_{2} W_{2} e_{2}\right)+\left(\alpha_{4}-\beta_{4}\right)\left(s_{1} W_{1} e_{1}+s_{2} W_{2} e_{2}\right) e_{3}\right\}\right]^{2} \\
= & \bar{Y}^{2} \mathrm{E}\left[\left(\delta_{4}-1\right)^{2}+\delta_{4}^{2}\left\{\left(\alpha_{4}-\beta_{4}\right)^{2} e_{3}^{2}+s_{1}^{2} W_{1}^{2} e_{1}^{2}+s_{2}^{2} W_{2}^{2} e_{2}^{2}+2 s_{1} s_{2} W_{1} W_{2} e_{1} e_{2}\right.\right. \\
& \left.+2\left(\alpha_{4}-\beta_{4}\right)\left(s_{1} W_{1} e_{1} e_{3}+s_{2} W_{2} e_{2} e_{3}\right)\right\}+2 \delta_{4}\left(\delta_{4}-1\right)\left\{\left(\alpha_{4}-\beta_{4}\right) e_{3}-\left(\alpha_{4}-\beta_{4}\right) \beta_{4} e_{3}^{2}\right. \\
& \left.\left.+\left(s_{1} W_{1} e_{1}+s_{2} W_{2} e_{2}\right)+\left(\alpha_{4}-\beta_{4}\right)\left(s_{1} W_{1} e_{1} e_{3}+s_{2} W_{2} e_{2} e_{3}\right)\right\}\right]
\end{aligned}
$$

Using (4.2), (4.7) and (4.8) we rewrite,

$$
\begin{aligned}
& =\bar{Y}^{2}\left[\left(\delta_{4}-1\right)^{2}+\delta_{4}^{2}\left\{\left(\alpha_{4}-\beta_{4}\right)^{2} \mathrm{E}\left(e_{3}^{2}\right)+s_{1}^{2} W_{1}^{2} \mathrm{E}\left(e_{1}^{2}\right)+s_{2}^{2} W_{2}^{2} \mathrm{E}\left(e_{2}^{2}\right)+2\left(\alpha_{4}-\beta_{4}\right) s_{1} W_{1} \mathrm{E}\left(e_{1} e_{3}\right)\right\}\right. \\
& \left.+2 \delta_{4}\left(\delta_{4}-1\right)\left\{-\left(\alpha_{4}-\beta_{4}\right) \beta_{4} \mathrm{E}\left(e_{3}^{2}\right)+\left(\alpha_{4}-\beta_{4}\right) s_{1} W_{1} \mathrm{E}\left(e_{1} e_{3}\right)\right\}\right] \\
& =\bar{Y}^{2}\left[\left(\delta_{4}-1\right)^{2}+\delta_{4}^{2}\left\{\left(\alpha_{4}-\beta_{4}\right)^{2}\left(D_{1}-\frac{1}{N}\right) C_{1 X}^{2}+s_{1}^{2} W_{1}^{2}\left(D_{1}-\frac{1}{N}\right) C_{1 Y}^{2}\right.\right. \\
& \left.+s_{2}^{2} W_{2}^{2}\left(D_{2}-\frac{1}{N}\right) C_{2 Y}^{2}+2\left(\alpha_{4}-\beta_{4}\right) s_{1} W_{1}\left(D_{1}-\frac{1}{N}\right) \rho_{1} C_{1 Y} C_{1 X}\right\} \\
& +2 \delta_{4}\left(\delta_{4}-1\right)\left\{-\left(\alpha_{4}-\beta_{4}\right) \beta_{4}\left(D_{1}-\frac{1}{N}\right) C_{1 X}^{2}\right. \\
& \left.\left.+\left(\alpha_{4}-\beta_{4}\right) s_{1} W_{1}\left(D_{1}-\frac{1}{N}\right) \rho_{1} C_{1 Y} C_{1 X}\right\}\right] \\
& =\bar{Y}^{2}\left[\left(\delta_{4}-1\right)^{2}+\left(D_{1}-\frac{1}{N}\right)\left\{\delta_{4}^{2} s_{1}^{2} W_{1}^{2} C_{1 Y}^{2}\right.\right. \\
& +\delta_{4}\left(\alpha_{4}-\beta_{4}\right)\left\{\delta_{4}\left(\alpha_{4}-\beta_{4}\right)-2\left(\delta_{4}-1\right) \beta_{4}\right\} C_{1 X}^{2} \\
& \left.\left.+2 \delta_{4}\left(2 \delta_{4}-1\right)\left(\alpha_{4}-\beta_{4}\right) s_{1} W_{1} \rho_{1} C_{1 Y} C_{1 X}\right\}+\left(D_{2}-\frac{1}{N}\right) \delta_{4}^{2} s_{2}^{2} W_{2}^{2} C_{2 Y}^{2}\right] \\
& =\bar{Y}^{2}\left[\left(\delta_{4}-1\right)^{2}+\left(D_{1}-\frac{1}{N}\right)\left\{I_{1} s_{1}^{2} C_{1 Y}^{2}+I_{2} C_{1 X}^{2}+2 I_{3} s_{1} \rho_{1} C_{1 Y} C_{1 X}\right\}+\left(D_{2}-\frac{1}{N}\right) \delta_{4}^{2} s_{2}^{2} W_{2}^{2} C_{2 Y}^{2}\right]
\end{aligned}
$$

### 6.0 SOME SPECIAL CASES :

The term $A, B$ and $C$ are functions of $k$. In particular, there are some special cases:
CASE I: When $k=1$
$A=0 ; \quad B=0 ; \quad C=-6 ; \quad \mu_{1}=-6 ; \quad \mu_{2}=0 ; \quad \mu_{3}=-6 t ; \quad \mu_{4}=-6 u ; \quad \alpha_{4}=0 ; \quad \beta_{4}=\frac{u}{t} ; \delta_{4}=\frac{1}{t} ;$
$I_{1}=\frac{W_{1}^{2}}{t^{2}} ; \quad I_{2}=\frac{u^{2}(3-2 t)}{t^{4}} ; \quad I_{3}=\frac{u W_{1}(t-2)}{t^{3}} ;$
The estimator $\left[\left(\bar{y}_{F T}\right)_{E}\right]_{k}$ along with bias and m.s.e. under case I is:
www.ijmer.com
$\left[\left(\bar{y}_{F T}\right)_{E}\right]_{k=1}=\left[\frac{N_{1} \bar{y}_{1}+N_{2} \bar{y}_{2}}{N}\right]\left[\frac{\bar{x}}{\frac{\bar{x}^{(5)}}{x^{2}}}\right]$
$\mathrm{B}\left[\left(\bar{y}_{F T}\right)_{E}\right]_{k=1}=\bar{Y} t^{-3}\left[(1-t) t^{2}+\left(D_{1}-\frac{1}{N}\right) u C_{1 \mathrm{X}}\left\{u C_{1 \mathrm{X}}-t s_{1} W_{1} \rho_{1} C_{1 \mathrm{Y}}\right\}\right]$
$\mathrm{M}\left[\left(\bar{y}_{F T}\right)_{E}\right]_{k=1}=\bar{Y}^{2} t^{-4}\left[(1-t)^{2} t^{2}+\left(D_{1}-\frac{1}{N}\right)\left\{t^{2} W_{1}^{2} s_{1}^{2} C_{1 Y}^{2}\right.\right.$

$$
\begin{equation*}
\left.\left.+u^{2}(3-2 t) C_{1 X}^{2}+2 t(t-2) u W_{1} s_{1} \rho_{1} C_{1 \mathrm{Y}} C_{1 \mathrm{X}}\right\}+\left(D_{2}-\frac{1}{N}\right) t^{2} W_{2}^{2} s_{2}^{2} C_{2 Y}^{2}\right] \tag{6.3}
\end{equation*}
$$

CASE II: When $k=2$

$$
\begin{align*}
& \begin{array}{l}
A=0 ; \quad B=-2 ; \quad C=0 ; \quad \mu_{1}=-2 f t ; \quad \mu_{2}=-2 f u ; \quad \mu_{3}=-2 f ; \mu_{4}=0 ; \\
\alpha_{4}=u t^{-1} ; \quad \beta_{4}=0 ; \quad \delta_{4}=t ; \quad I_{1}=W_{1}^{2} t^{2} ; \quad I_{2}=u^{2} ; \quad I_{3}=u W_{1}(2 t-1) \\
\quad\left[\left(\bar{y}_{F T}\right)_{E}\right]_{k=2}= \\
\left.\left.\begin{array}{rl}
\mathrm{B}\left[\left(\bar{y}_{F T}\right)_{E}\right]_{k=2}= & \bar{Y}\left[(t-1)+\left(\bar{y}_{1}+N_{2}-\bar{y}_{2}\right.\right. \\
N
\end{array}\right]\left[\frac{-\bar{x}}{N}\right) u s_{1} W_{1} \rho_{1} C_{1 Y} C_{1 X}\right] \\
\mathrm{M}\left[\left(\bar{y}_{F T}\right)_{E}\right]_{k=2}= \\
\\
\\
\\
\quad+\left(\bar{Y}^{2}\left[(t-1)^{2}+\left(D_{1}-\frac{1}{N}\right) t^{2} W_{2}^{2} s_{2}^{2} C_{2 Y}^{2}\right]\right.
\end{array}
\end{align*}
$$

CASE III: When $k=3$
$A=2 ; B=-2 ; C=0 ; \quad \mu_{1}=2(1-f t) ; \mu_{2}=-2 f u ; \mu_{3}=2(1-f) ; \mu_{4}=0 ;$
$\alpha_{4}=\frac{-f u}{1-f t} ; \quad \beta_{4}=0 ; \quad \delta_{4}=\frac{1-f t}{1-f} ; \quad I_{1}=\frac{(1-f t)^{2} W_{1}^{2}}{(1-f)^{2}} ; \quad I_{2}=\frac{u^{2} f^{2}}{(1-f)^{2}} ; \quad I_{3}=\frac{f u W_{1}\{2 f t-f-1\}}{(1-f)^{2}} ;$
$\left[\left(\bar{y}_{F T}\right)_{E}\right]_{k=3}=\left(\frac{N_{1} \bar{y}_{1}+N_{2} \bar{y}_{2}}{N}\right)\left[\frac{\bar{X}+f \bar{x}^{-(5)}}{(1-f) \bar{X}}\right]$
B $\left[\left(\bar{y}_{F T}\right)_{E}\right]_{k=3}=\bar{Y} f(1-f)^{-1}\left[(1-t)-\left(D_{1}-\frac{1}{N}\right) u W_{1} s_{1} \rho_{1} C_{1 Y} C_{1 X}\right]$

$$
\begin{align*}
& \mathrm{M}\left[\left(\bar{y}_{F T}\right)_{E}\right]_{k=3}=\bar{Y}^{2}(1-f)^{-2}\left[f^{2}(1-t)^{2}+\left(D_{1}-\frac{1}{N}\right)\left\{(1-f t)^{2} s_{1}^{2} W_{1}^{2} C_{1 Y}^{2}+u^{2} f^{2} C_{1 X}^{2}\right.\right. \\
&\left.\left.+2(2 f t-f-1)\} f u W_{l} s_{1} \rho_{1} C_{l Y} C_{1 X}\right\}+\left(D_{2}-\frac{1}{N}\right)(1-f t)^{2} W_{2}^{2} s_{2}^{2} C_{2 Y}^{2}\right] \tag{6.9}
\end{align*}
$$

CASE IV: When $k=4$;
$A=6 ; B=0 ; C=0 ; \mu_{1}=6 ; \mu_{2}=0 ; \mu_{3}=6 ; \mu_{4}=0 ; \alpha_{4}=0 ; \beta_{4}=0 ; \delta_{4}=1 ; I_{1}=W_{1}^{2} ; I_{2}=0 ; I_{3}=0$;
$\left[\left(\bar{y}_{F T}\right)_{E}\right]_{k=4}=\left[\frac{N_{1} \bar{y}_{1}+N_{2} \bar{y}_{2}}{N}\right]$
$\mathrm{B}\left[\left(\bar{y}_{F T}\right)_{E}\right]_{k=4}=0$
$\mathrm{V}\left[\left(\bar{y}_{F T}\right)_{E}\right]_{k=4}=\left(D_{1}-\frac{1}{N}\right) \cdot W_{1}^{2} \bar{Y}_{1}^{2} C_{1 Y}^{2}+\left(D_{2}-\frac{1}{N}\right) \cdot W_{2}^{2} \bar{Y}_{2}^{2} C_{2 Y}^{2}$

### 7.0 ESTIMATOR WITHOUT IMPUTATION :

Throughout the discussion, the assumption is unknown value of $\bar{x}_{2}$. This is imputed by the term $\left(\bar{x}_{2}^{*}\right)_{5}$, to provide the generation of $\bar{x}^{(5)}$. [See eq.(3.1) and (3.2)]. Suppose the $\bar{x}_{2}$ is known, then there is no need of imputation and the proposed (3.2) and (3.3) reduces into :

$$
\begin{align*}
& \bar{x}^{(*)}=\left(\frac{N_{1} \bar{x}_{1}+N_{2} \bar{x}_{2}}{N}\right)  \tag{7.1}\\
& {\left[\left(\bar{y}_{F T}\right)_{w}\right]_{k}=\left(\frac{N_{1} \bar{y}_{1}+N_{2} \bar{y}_{2}}{N}\right)\left(\frac{(A+C) \bar{X}+f B \bar{x}^{(*)}}{(A+f B) \bar{X}+C \bar{x}^{(*)}}\right)}
\end{align*}
$$

where, $k$ is a constant, $0<k<\infty$ and
$A=(k-1)(k-2) ; B=(k-1)(k-4) ; C=(k-2)(k-3)(k-4) ; f=n / N$.
THEOREM 7.1: The estimator $\left[\left(\bar{y}_{F T}\right)_{w}\right]_{k}$ is biased for $\bar{Y}$ with the amount of bias

$$
\begin{aligned}
& B\left[\left(\bar{y}_{F T}\right)_{w}\right]_{k}=\left(\mu_{1}^{\prime}-\mu_{2}^{\prime}\right)\left[\left(D_{1}-\frac{1}{N}\right) W_{1}^{2} r_{1} C_{1 X}\left\{s_{1} \rho_{1} C_{1 Y}-\mu_{2}^{\prime} r_{1} C_{1 X}\right\}\right. \\
&\left.+\left(D_{2}-\frac{1}{N}\right) W_{2}^{2} r_{2} C_{2 X}\left\{s_{2} \rho_{2} C_{2 Y}-\mu_{2}^{\prime} r_{2} C_{2 X}\right\}\right]
\end{aligned}
$$

where,

$$
\mu_{1}^{\prime}=f B /(A+f B+C) ; \quad \mu_{2}^{\prime}=C /(A+f B+C)
$$

PROOF: The estimator $\left[\left(\bar{y}_{F T}\right)_{w}\right]_{k}$ could be approximate like :

$$
\begin{aligned}
{\left[\left(\bar{y}_{F T}\right)_{w}\right]_{k} } & =\left(\frac{N_{1} \bar{y}_{1}+N_{2} \bar{y}_{2}}{N}\right)\left(\frac{(A+C) \bar{X}+f B \bar{x}^{(*)}}{(A+f B) \bar{X}+C \bar{x}^{(*)}}\right) \\
& =\left[\frac{N_{1} \bar{Y}_{1}\left(1+e_{1}\right)+N_{2} \bar{Y}_{2}\left(1+e_{2}\right)}{N}\right]\left[\frac{N(A+C) \bar{X}+f B\left\{N_{1} \bar{X}_{1}\left(1+e_{3}\right)+N_{2} \bar{X}_{2}\left(1+e_{4}\right)\right\}}{N(A+f B) \bar{X}+C\left\{N_{1} \bar{X}_{1}\left(1+e_{3}\right)+N_{2} \bar{X}_{2}\left(1+e_{4}\right)\right\}}\right] \\
& =\left[\bar{Y}+W_{1} \bar{Y}_{1} e_{1}+W_{2} \bar{Y}_{2} e_{2}\right]\left[\frac{(A+f B+C)+f B\left(W_{1} r_{1} e_{3}+W_{2} r_{2} e_{4}\right)}{(A+f B+C)+C\left(W_{1} r_{1} e_{3}+W_{2} r_{2} e_{4}\right)}\right] \\
& =\left[\bar{Y}+W_{1} \bar{Y}_{1} e_{1}+W_{2} \bar{Y}_{2} e_{2}\right]\left[1+\mu_{1}\left(W_{1} r_{1} e_{3}+W_{2} r_{2} e_{4}\right)\right]\left[1+\mu_{2}^{\prime}\left(W_{1} r_{1} e_{3}+W_{2} r_{2} e_{4}\right)^{-1}\right]
\end{aligned}
$$

Expanding above using binominal expansion, and ignoring $\left(e_{i}^{k} e_{j}^{l}\right)$ terms for $(k+l)$
$>2,(k, l=0,1,2 \ldots \ldots .),.(i, j=1,2,3,4)$; the estimator results into
$\left[\left(\bar{y}_{F T}\right)_{w}\right]_{k}=\bar{Y}+\bar{Y}\left(\Delta_{1}-\Delta_{2}\right)+W_{1} \bar{Y}_{1} e_{1}\left(1+\Delta_{1}-\Delta_{2}\right)+W_{2} \bar{Y}_{2} e_{2}\left(1+\Delta_{1}-\Delta_{2}\right)$
where. $\Delta_{1}=\left(\mu_{1}^{\prime}-\mu_{2}^{\prime}\right)\left(W_{1} r_{1} e_{3}+W_{2} r_{2} e_{4}\right) ; \Delta_{2}=\mu_{2}^{\prime}\left(\mu_{1}^{\prime}-\mu_{2}^{\prime}\right)\left(W_{1} r_{1} e_{3}+W_{2} r_{2} e_{4}\right)^{2}$
and $\quad W_{1} r_{1}+W_{2} r_{2}=1$ holds.
Further, one can derive up to first order of approximation, the following
(i) $\mathrm{E}\left[\Delta_{1}\right]=0$
(ii) $\mathrm{E}\left[\Delta_{1}^{2}\right]=\left(\mu_{1}^{\prime}-\mu_{2}^{\prime}\right)^{2}\left[W_{1}^{2} r_{1}^{2}\left(D_{1}-\frac{1}{N}\right) C_{1 X}^{2}+W_{2}^{2} r_{2}^{2}\left(D_{2}-\frac{1}{N}\right) C_{2 X}^{2}\right]$
(iii) $\mathrm{E}\left[\Delta_{2}\right]=\mu_{2}^{\prime}\left(\mu_{1}^{\prime}-\mu_{2}^{\prime}\right)\left[W_{1}^{2} r_{1}^{2}\left(D_{1}-\frac{1}{N}\right) C_{1 X}^{2}+W_{2}^{2} r_{2}^{2}\left(D_{2}-\frac{1}{N}\right) C_{2 X}^{2}\right]$
(iv) $\mathrm{E}\left[e_{1} \Delta_{1}\right]=\left(\mu_{1}^{\prime}-\mu_{2}^{\prime}\right) W_{1} r_{1}\left(D_{1}-\frac{1}{N}\right) \rho_{1} C_{1 Y} C_{1 X}$
(v) $\mathrm{E}\left[e_{2} \Delta_{1}\right]=\left(\mu_{1}^{\prime}-\mu_{2}^{\prime}\right) W_{2} r_{2}\left(D_{2}-\frac{1}{N}\right) \rho_{2} C_{2 Y} C_{2 X}$
(vi) $\mathrm{E}\left[e_{1} \Delta_{2}\right]=0\left[\right.$ under o $\left.\left(n^{-1}\right)\right]$
(vii) $\mathrm{E}\left[e_{2} \Delta_{2}\right]=0\left[\right.$ under o $\left.\left(n^{-1}\right)\right]$

The bias of estimator without imputation is

$$
\begin{aligned}
\mathrm{B}\left[\left(\bar{y}_{F T}\right)_{w}\right]_{k}= & \mathrm{E}\left[\left\{\left(\bar{y}_{F T}\right)_{w}\right\}_{k}-\bar{Y}\right] \\
= & \mathrm{E}\left[\overline{\mathrm{Y}}\left(\Delta_{1}-\Delta_{2}\right)+W_{1} \bar{Y}_{1} e_{1}\left(1+\Delta_{1}-\Delta_{2}\right)+W_{2} \bar{Y}_{2} e_{2}\left(1+\Delta_{1}-\Delta_{2}\right)\right] \\
= & {\left[W_{1} \bar{Y}_{1} \mathrm{E}\left(e_{1} \Delta_{1}\right)+W_{2} \bar{Y}_{2} \mathrm{E}\left(e_{2} \Delta_{1}\right)-\bar{Y} \mathrm{E}\left(\Delta_{2}\right)\right] } \\
= & \left(\mu_{1}^{\prime}-\mu_{2}^{\prime}\right)\left[\left(D_{1}-\frac{1}{N}\right) W_{1}^{2} r_{1} C_{1 X}\left\{\bar{Y}_{1} \rho_{1} C_{1 Y}-\bar{Y}_{\mu_{2}}^{\prime} r_{1} C_{1 X}\right\}\right. \\
& \left.+\left(D_{2}-\frac{1}{N}\right) W_{2}^{2} r_{2} C_{2 X}\left\{\bar{Y}_{2} \rho_{2} C_{2 Y}-\bar{Y}_{2}^{\prime} r_{2} C_{2 X}\right\}\right] \\
= & \bar{Y}\left(\mu_{1}^{\prime}-\mu_{2}^{\prime}\right)\left[\left(D_{1}-\frac{1}{N}\right) W_{1}^{2} r_{1} C_{1 X}\left\{s_{1} \rho_{1} C_{1 Y}-\mu_{2}^{\prime} r_{1} C_{1 X}\right\}\right. \\
& \left.+\left(D_{2}-\frac{1}{N}\right) W_{2}^{2} r_{2} C_{2 X}\left\{s_{2} \rho_{2} C_{2 Y}-\mu_{2}^{\prime} r_{2} C_{2 X}\right\}\right]
\end{aligned}
$$

THEOREM 7.2 : The mean squared error of the estimator $\left[\left(\bar{y}_{F T}\right)_{w}\right]_{k}$ is
$\mathrm{M}\left[\left(\bar{y}_{F T}\right)_{w}\right]_{k}=\bar{Y}^{2}\left[\left(D_{1}-\frac{1}{N}\right) W_{1}^{2}\left\{T_{1}^{2} C_{1 Y}^{2}+T_{2}^{2} C_{1 X}^{2}+2 T_{1} T_{2} \rho_{1} C_{1 Y} C_{1 X}\right\}\right]$
where $\quad T_{1}=s_{1} ; \quad T_{2}=\left(\mu_{1}^{\prime}-\mu_{2}^{\prime}\right) r_{1} ; \quad S_{1}=s_{2} ; \quad S_{2}=\left(\mu_{1}^{\prime}-\mu_{2}^{\prime}\right) r_{2} ;$
PROOF : $\quad \mathrm{M}\left[\left(\bar{y}_{F T}\right)_{w}\right]_{k}=\mathrm{E}\left[\left\{\left(y_{F T}\right)_{w}\right\}_{k}-\bar{Y}\right]^{2}$

$$
\begin{aligned}
&= \mathrm{E}\left[\bar{Y}\left(\Delta_{1}-\Delta_{2}\right)+W_{1} \bar{Y}_{1} e_{1}\left(1+\Delta_{1}-\Delta_{2}\right)+W_{2} \bar{Y}_{2} e_{2}\left(1+\Delta_{1}-\Delta_{2}\right)\right]^{2} \\
&= \bar{Y}^{2} \mathrm{E}\left(\Delta_{1}^{2}\right) \\
&+W_{1}^{2} \bar{Y}_{1}^{2} \mathrm{E}\left(e_{1}^{2}\right)+W_{2}^{2} \bar{Y}_{2}^{2} \mathrm{E}\left(e_{2}^{2}\right)+2 W_{1} \bar{Y} \bar{Y} \\
&+2 W_{2} \bar{Y} \bar{Y}_{2} \mathrm{E}\left(e_{2} \Delta_{1}\right)+2 W_{1} W_{2} \bar{Y}_{1} \bar{Y}_{2} \mathrm{E}\left(e_{1} e_{2}\right) \\
&=\bar{Y}^{2}\left[\left(\mu_{1}^{\prime}-\mu_{2}^{\prime}\right)^{2}\left\{W_{1}^{2} r_{1}^{2}\left(D_{1}-\frac{1}{N}\right) C_{1 X}^{2}+W_{2}^{2} r_{2}^{2}\left(D_{2}-\frac{1}{N}\right) C_{2 X}^{2}\right\}\right. \\
&+\left\{W_{1}^{2} s_{1}^{2}\left(D_{1}-\frac{1}{N}\right) C_{1 Y}^{2}+W_{2}^{2} s_{2}^{2}\left(D_{2}-\frac{1}{N}\right) C_{2 Y}^{2}\right\}
\end{aligned}
$$

$$
\begin{gathered}
+2 W_{1} s_{1}\left(\mu_{1}^{\prime}-\mu_{2}^{\prime}\right)\left\{W_{1} r_{1}\left(D_{1}-\frac{1}{N}\right) \rho_{1} C_{1 Y} C_{1 X}\right\} \\
+ \\
=\bar{Y}^{2}\left[\left(W_{2} s_{2}\left(\mu_{1}^{\prime}-\mu_{2}^{\prime}\right)\left\{W_{2} r_{2}\left(D_{2}-\frac{1}{N}\right) \rho_{2} C_{2 Y} C_{2 X}\right\}\right]\right. \\
\\
\left.+\left(D_{2}-\frac{1}{N}\right) W_{2}^{2}\left\{T_{1}^{2} C_{1 Y}^{2}+T_{2}^{2} C_{1 X}^{2}+2 T_{1} T_{2} \rho_{1} C_{1 Y} C_{1 X}^{2} C_{2 X}^{2}+2 S_{1} S_{2} \rho_{2} C_{2 Y} C_{2 X}\right\}\right]
\end{gathered}
$$

## REMARK 7.1:

At $k=1, k=2, k=3$ and $k=4$, there are some special cases of non-imputed estimators with the respective bias and mean squared error as laid down below :
CASE I: When $k=1$
$A=0 ; B=0 ; C=-6 ; \mu_{1}^{\prime}=0 ; \mu_{2}^{\prime}=1 ; \quad T_{1}=s_{1} ; T_{2}=-r_{1} ; S_{1}=s_{1} ; \quad S_{2}=-r_{2} ;$

$$
\begin{aligned}
& {\left[\left(\bar{y}_{F T}\right)_{w}\right]_{k=1}=\left(\frac{N_{1} \bar{y}_{1}+N_{2} \bar{y}_{2}}{N}\right)\left(\frac{\bar{X}}{\bar{x}^{(*)}}\right)} \\
& \mathrm{B}\left[\left(\bar{y}_{F T}\right)_{w}\right]_{k=1}=-\bar{Y}\left[\left(D_{1}-\frac{1}{N}\right) W_{1}^{2} r_{1} C_{1 X}\left\{s_{1} \rho_{1} C_{1 Y}-r_{1} C_{1 X}\right\}+\left(D_{2}-\frac{1}{N}\right) W_{2}^{2} r_{2} C_{2 X}\left\{s_{2} \rho_{2} C_{2 Y}-r_{2} C_{2 X}\right\}\right] \\
& \mathrm{M}\left[\left(\bar{y}_{F T}\right)_{w}\right]_{k=1}=\bar{Y}^{2}\left[\left(D_{1}-\frac{1}{N}\right) W_{1}^{2}\left\{s_{1}^{2} C_{1 Y}^{2}+r_{1}^{2} C_{1 X}^{2}-2 s_{1} r_{1} \rho_{1} C_{1 Y} C_{1 X}\right\}\right. \\
& \\
& \left.\quad+\left(D_{2}-\frac{1}{N}\right) W_{2}^{2}\left\{s_{2}^{2} C_{2 Y}^{2}+r_{2}^{2} C_{2 X}^{2}-2 s_{2} r_{2} \rho_{2} C_{2 Y} C_{2 X}\right\}\right]
\end{aligned}
$$

CASE II: When $k=2$

$$
A=0 ; B=-2 ; C=0 ; \mu_{1}^{\prime}=1 ; \quad \mu_{2}^{\prime}=0 ; T_{1}=s_{1} ; T_{2}=r_{1} ; S_{1}=s_{2} ; \quad S_{2}=r_{2}
$$

$$
\left[\left(\bar{y}_{F T}\right)_{w}\right]_{k=2}=\left(\frac{N_{1} \bar{y}_{2}+N_{2} y_{2}}{N}\right)\left(\frac{\bar{x}^{(*)}}{\bar{X}}\right)
$$

$$
\mathrm{B}\left[\left(\bar{y}_{F T}\right)_{w}\right]_{k=2}=\bar{Y}\left[\left(D_{1}-\frac{1}{N}\right) W_{1}^{2} s_{1} r_{1} \rho_{1} C_{1 X} C_{1 Y}+\left(D_{2}-\frac{1}{N}\right) W_{2}^{2} s_{2} r_{2} \rho_{2} C_{2 X} C_{2 Y}\right]
$$

$$
\mathrm{M}\left[\left(\bar{y}_{F T}\right)_{w}\right]_{k=2}=\bar{Y}^{2}\left[\left(D_{1}-\frac{1}{N}\right) W_{1}^{2}\left\{s_{1}^{2} C_{1 Y}^{2}+r_{1}^{2} C_{1 X}^{2}+2 s_{1} r_{1} \rho_{1} C_{1 Y} C_{1 X}\right\}\right.
$$

$$
\left.+\left(D_{2}-\frac{1}{N}\right) W_{2}^{2}\left\{s_{2}^{2} C_{2 Y}^{2}+r_{2}^{2} C_{2 X}^{2}+2 s_{2} r_{2} \rho_{2} C_{2 Y} C_{2 X}\right\}\right]
$$

CASE III : When $k=3$

$$
\begin{gathered}
A=2 ; \quad B=-2 ; \quad C=0 ; \quad \mu_{1}^{\prime}=-f(1-f)^{-1} ; \quad \mu_{2}^{\prime}=0 \\
T_{1}=s_{1} ; \quad T_{2}=r_{1} f(1-f)^{-1} ; S_{1}=s_{2} ; S_{2}=r_{2} f(1-f)^{-1} \\
{\left[\left(\bar{y}_{F T}\right)_{w}\right]_{k=3}=\left(\frac{N_{1} \bar{y}_{1}+N_{2} \bar{y}_{2}}{N}\right)\left(\frac{\bar{X}-\bar{x}^{(*)}}{(1-f) \bar{X}}\right)}
\end{gathered}
$$

$B\left[\left(\bar{y}_{F T}\right)_{w}\right]_{k=3}=-\bar{Y} f(1-f)^{-1}\left[\left(D_{1}-\frac{1}{N}\right) W_{1}^{2} r_{1} s_{1} \rho_{1} C_{1 Y} C_{1 X}\right.$

$$
\left.+\left(D_{2}-\frac{1}{N}\right) W_{2}^{2} r_{2} s_{2} \rho_{2} C_{2 Y} C_{2 X}\right]
$$

$M\left[\left(\bar{y}_{F T}\right)_{w}\right]_{k=3}=\bar{Y}^{2}\left[\left(D_{1}-\frac{1}{N}\right) W_{1}^{2}\left\{s_{1}^{2} C_{1 Y}^{2}+(1-f)^{-2} f^{2} r_{1}^{2} C_{1 X}^{2}\right.\right.$

$$
\begin{aligned}
& \left.-2(1-f)^{-1} f s_{1} r_{1} \rho_{1} C_{1 Y} C_{1 X}\right\}+\left\{\left(D_{2}-\frac{1}{N}\right) W_{2}^{2} s_{2}^{2} C_{2 Y}^{2}\right. \\
& \left.\left.\quad+(1-f)^{-2} f^{2} r_{2}^{2} C_{2 X}^{2}-2(1-f)^{-1} f s_{2} r_{2} \rho_{2} C_{2 Y} C_{2 X}\right\}\right]
\end{aligned}
$$

Case IV: When $k=4$,

$$
\begin{aligned}
& A=6 ; B=0 ; C=0 ; \mu_{1}^{\prime}=0 ; \quad \mu_{2}^{\prime}=0 ; \quad T_{1}=s_{1} ; T_{2}=0 ; S_{1}=s_{2 ;} S_{2}=0 ; \\
& {\left[\left(\bar{y}_{F T}\right)_{w}\right]_{k=4}=\left(\frac{N_{1} \bar{y}_{1}+N_{2} \bar{y}_{2}}{N}\right)} \\
& B\left[\left(\bar{y}_{F T}\right)_{w}\right]_{k=4}=0 \\
& V\left[\left(\bar{y}_{F T}\right)_{w}\right]_{k=4}=\left[\bar{Y}^{2}\left(D_{1}-\frac{1}{N}\right) W_{1}^{2} s_{1}^{2} C_{1 Y}^{2}+\left(D_{2}-\frac{1}{N}\right) W_{2}^{2} s_{2}^{2} C_{2 Y}^{2}\right]
\end{aligned}
$$

### 8.0 NUMERICAL ILLUSTRATION :

Consider two populations I and II given in appendix A and B. Both the populations and divided into two parts as R-group and NR-group having size $N_{1}$ and $N_{2}$ respectively ( $N=N_{1}+$ $N_{2}$ ). The population parameters are displayed below :

TABLE 8.1 : PARAMETERS OF POPULATION - I (IN APPENDIX A)

|  | Entire Population | For R-group | For NR-group |
| :--- | :---: | :---: | :---: |
| Size | $N=180$ | $N_{1}=100$ | $N_{2}=80$ |
| Mean $\boldsymbol{Y}$ | $\bar{Y}=159.03$ | $\bar{Y}_{1}=173.60$ | $\bar{Y}_{2}=140.81$ |
| Mean $\boldsymbol{X}$ | $\bar{X}=113.22$ | $\bar{X}_{1}=128.45$ | $\bar{X}_{2}=94.19$ |
| Mean Square $\boldsymbol{Y}$ | $S_{Y}^{2}=2205.18$ | $S_{1 Y}^{2}=2532.36$ | $S_{2 Y}^{2}=1219.90$ |
| Mean Square $\boldsymbol{X}$ | $S_{X}^{2}=1972.61$ | $S_{1 X}^{2}=2300.86$ | $S_{2 X}^{2}=924.17$ |
| Coefficient of Variation of $\boldsymbol{Y}$ | $C_{Y}=0.295$ | $C_{1 Y}=0.2899$ | $C_{2 Y}=0.248$ |
| Coefficient of Variation of $\boldsymbol{X}$ | $C_{X}=0.392$ | $C_{1 X}=0.373$ | $C_{2 X}=0.323$ |
| Correlation coefficient | $\rho_{X Y}=0.897$ | $\rho_{1 X Y}=0.857$ | $\rho_{2 X Y}=0.956$ |

TABLE 8.2: PARAMETERS OF POPULATION - II (IN APPENDIX B)

|  | Entire Population | For R-group | For NR-group |
| :--- | :---: | :---: | :---: |
| Size | $N=150$ | $N_{1}=90$ | $N_{2}=60$ |
| Mean $\boldsymbol{Y}$ | $\bar{Y}=63.77$ | $\bar{Y}_{1}=66.33$ | $\bar{Y}_{2}=59.92$ |
| Mean $\boldsymbol{X}$ | $\bar{X}=29.2$ | $\bar{X}_{1}=30.72$ | $\bar{X}_{2}=26.92$ |
| Mean Square $\boldsymbol{Y}$ | $S_{Y}^{2}=299.87$ | $S_{1 Y}^{2}=349.33$ | $S_{2 Y}^{2}=206.35$ |
| Mean Square $\boldsymbol{X}$ | $S_{X}^{2}=110.43$ | $S_{1 X}^{2}=112.67$ | $S_{2 X}^{2}=100.08$ |
| Coefficient of Variation of $\boldsymbol{Y}$ | $C_{Y}=0.272$ | $C_{1 Y}=0.282$ | $C_{2 Y}=0.2397$ |
| Coefficient of Variation of $\boldsymbol{X}$ | $C_{X}=0.3599$ | $C_{1 X}=0.345$ | $C_{2 X}=0.3716$ |
| Correlation coefficient | $\rho_{X Y}=0.8093$ | $\rho_{1 X Y}=0.8051$ | $\rho_{2 X Y}=0.8084$ |

Let samples of size $n=40$ and $n=30$ are drawn from population I and II respectively by SRSWOR and post-stratified into R and NR-groups. The sample values are in Table 6.8.3 and 6.8.4.

TABLE 8.3: SAMPLE VALUES FOR POPULATION - I

|  | Entire Sample | R-group | NR-group |
| :--- | :---: | :---: | :---: |
| Size | $n=40$ | $n_{1}=28$ | $n_{2}=12$ |
| Fraction | $f=0.22$ | - | - |

TABLE 8.4 : SAMPLE VALUES FOR POPULATION - II

|  | Entire Sample | R-group | NR-group |
| :--- | :---: | :---: | :---: |
| Size | $n=30$ | $n_{1}=20$ | $n_{2}=10$ |
| Fraction | $f=0.2$ | - | - |

Table 8.5 : Bias and M.S.E. Comparisons of $\left[\left(\overline{\mathrm{y}}_{\mathrm{FT}}\right)_{E}\right]_{\mathrm{k}}$

|  | Population I |  | Population II |  |
| :---: | :---: | :---: | :---: | :---: |
| Estimator | Bias | M.S.E. | Bias | M.S.E. |
| $\left[\left(\bar{y}_{\boldsymbol{F T}}\right)_{\boldsymbol{E}}\right]_{k=1}$ | -1.7802 | 18.4419 | 0.7708 | 7.6442 |
| $\left[\left(\bar{y}_{\boldsymbol{F T}}\right)_{\boldsymbol{E}}\right]_{k=2}$ | 2.0992 | 222.1439 | -0.5739 | 48.9692 |
| $\left[\left(\bar{y}_{\boldsymbol{F T}}\right)_{\boldsymbol{E}}\right]_{k=3}$ | -0.5913 | 9.1005 | -0.3507 | 6.3859 |
| $\left[\left(\bar{y}_{\boldsymbol{F T}}\right)_{\boldsymbol{E}}\right]_{\boldsymbol{k}=4}$ | 0 | 43.6500 | 0 | 9.2675 |

TABLE 8.6 : BIAS AND M.S.E. COMPARISON OF $\left[\left(\overline{\mathrm{y}}_{\mathrm{FT}}\right)_{w}\right]_{\mathrm{k}}$

|  | Population I |  | Population II |  |
| :--- | :---: | :---: | :---: | :---: |
| Estimator | Bias | M.S.E. | Bias | M.S.E. |
| $\left[\left(\bar{y}_{F T}\right)_{w}\right]_{k=1}$ | 0.1433 | 12.9589 | 0.1095 | 6.0552 |
| $\left[\left(\bar{y}_{F T}\right)_{w}\right]_{k=2}$ | 0.3141 | 216.3024 | 0.1599 | 46.838 |
| $\left[\left(\bar{y}_{F T}\right)_{w}\right]_{k=3}$ | -0.096 | 4.327 | -0.031 | 5.2423 |
| $\left[\left(\bar{y}_{F T}\right)_{w}\right]_{k=4}$ | 0 | 43.65 | 0 | 9.2662 |

### 9.0 DISCUSSION :

The idea of utilizing a composition of $\bar{X}, ~ \bar{X}_{1}$ and non-sampled part $\bar{x}_{2}^{*}$ is taken into consideration as an imputation methodology in equation (3.3). The class of imputed type estimator is proposed which has several members as special cases. Bias and mean squared error of the class is obtained via theorem 5.1 and 5.2. The class of non-imputed estimator is also derived in equation (7.2) and compared with the imputed one. Expressions for special cases are also derived. The computation over two populations is performed for bias and mean squared error. Over first population M. S. E. for non-imputed are very close to the imputed estimator. The similar pattern is found in population II also. At $k=3$, the $\mathrm{m} . \mathrm{s}$. e. of population two is lowest. At $k=2$, the class of estimator bears highest m.s.e. For all cases $k=1,2,3$ the estimators are biased but in small amount. The choice $k=3$ seems with lowest bias and therefore, is recommended for a good selection.

### 10.0 CONCLUSIONS :

The proposed imputation technique is useful and effective for obtaining population mean $\bar{Y}$ using factor-type estimation strategy. The choice $k=3$ performs best in terms of lowest bias and lowest mean squared error. The imputation based mean squared error are little higher than non-imputed but very close in performance. Therefore, the composition of $\bar{X}, \overline{X_{1}}$ and non-sampled part of population plays an important role in driving imputation methodology for missing observation $\bar{x}_{2}$.

## REFERENCES

1. Agrawal, M.C. and Panda, K.B.(1993): An efficient estimator in post-stratification, Metron, 51, 3-4, 179-187.
2. Ahmed, M.S., Al-titi, Omar, Al-Rawi, Ziad and Abu-dayyeh, Walid(2006): Estimation of a population mean using different imputation method, Statistics in Transition, 7(6), 1247-1264.
3. Cochran, W.G.(2005): Sampling Techniques, Third Edition, John Willey \& Sons, New Delhi.
4. Grover and Couper(1998): Non-response in household surveys, John Wiley and Sons, New York.
5. Hansen, M.H. and Hurwitz, W.N. (1946): The problem of non-response in sample surveys, Jour. Amer. Stat. Asso., 41, 517-529.
6. Hansen, M.H., Hurwitz, W.N. and Madow, W.G.(1993): Sample Survey Methods and Theory, John Wiley and Sons, New York.
7. Hinde, R.L. and Chambers, R.L. (1990): Non-response imputation with multiple source of non-response, Jour. Off. Statistics, 7, 169-179.
8. Holt., D. and Smith, T.M.F.(1979): Post-stratification, J. R. Stat. Soc., Ser. A. 143, 33-46.
9. Jackway, P.T. and Boyce, R.A. (1987): Response including techniques of mail surveys, Aus. Jour. of Stat., 29, 255-263.
10. Jagers, P. (1986): Post-stratification against bias in sampling, International Statistical Review, 54, $159-167$.
11. Jagers, P., Oden, A. and Trulsoon, L. (1985): Post-stratification and ratio estimation, Int. Stat. Rev., 53, 221238.
12. Khare, B.B.(1987): Allocation in stratified sampling in presence of non-response, Metron , 45(I/II), $213-221$.
13. Khot, P.S.(1994): A note on handling non-response in sample surveys, Jour. Amer. Stat. Assoc., 89, 693-696.
14. Lessler and Kalsbeek(1992): Non-response error in surveys, John Wiley and Sons, New York.
15. Murthy, M.N. (1976): Sampling Theory and Methods, Statistical Publishing Society, Calcutta
16. Rao, J.N.K. and Sitter, R.R.(1995): Variance estimation under two phase sampling with application to imputation for missing data, Biometrika, 82, 453-460.
17. Rubin, D.B.(1976): Inference and missing data, Biometrika, 63, 581-593.
18. Sahoo, L.N.(1984): A note on estimation of the population mean using two auxiliary variables, Ali. Jour. Stat., 34, 63-66.
19. Sahoo, L.N.(1986): On a class of unbiased estimators using multi auxiliary information, Jour. Ind. Soc. Ag. Stat, 38-3, 379-382.
20. Sahoo, L.N. and Sahoo, R. K. (2001): Predictive estimation of finite population mean in two-phase sampling using two auxiliary variables, Ind. Soc. Ag. Stat., 54 (4), 258-264.
21. Sahoo, L.N., Sahoo J. and Mohanty, S.(1995): New predictive ratio estimator, Jour. Ind. Soc. Ag. Stat., 47(3), 240-242.
22. Shrivastava, S.K. and Jhajj, H. S. (1980): A class of estimators using auxiliary information for estimation finite population variance, Sankhya, C, 42, 87-96.
23. Shrivastava, S.K. and Jhajj, H. S. (1981): A class of the population mean in a survey sampling using auxiliary information, Biometrika, 68, 341-343.
24. Shukla, D. (2002): F-T estimator under two phase sampling, Metron, 59, 1-2, 253-263.
25. Shukla, D. and Dubey, J. (2001): Estimation in mail surveys under PSNR sampling scheme, Ind. Soc. Ag. Stat., 54, 3, 288-302.
26. Shukla, D. and Dubey, J.(2004): On estimation under post-stratified two phase non-response sampling scheme in mail surveys, International Jour. of Management and Systems, 20, 3, 269-278.
27. Shukla, D. and Dubey, J. (2006): On earmarked strata in post-stratification, Statistics in Transition, 7, 5, 10671085.
28. Shukla, D. and Thakur, N. S. (2008): Estimation of mean with imputation of missing data using factor type estimator, Statistics in Transition, 9, 1, 33-48.
29. Shukla, D., Thakur, N. S., Pathak, S. and Rajput, D. S. (2009a): Estimation of mean under imputation of missing data using factor-type estimator in two-phase sampling, Statistics in Transition, 10, 3, 397-414.
30. Shukla, D., Thakur, N. S. and Thakur, D. S. (2009b): Utilization of non-response auxiliary population mean in imputation for missing observations, Journal of Reliability and Statistical Studies, 2, 1, 28-40.
31. Shukla, D. and Trivedi, M.(1999): A new estimator for post-stratified sampling scheme, Proceedings of NSBATA (Bayesian Analysis), Eds. Rajesh Singh, 206-218.
32. Shukla, D. and Trivedi, M. (2001): mean estimation in deeply stratified population under post-stratification. Ind. Soc. Ag. Stat., 54(2), 221-235.
33. Shukla, D. and Trivedi, M.(2006): Examining stability of variability ratio with application in poststratification, International Jour. of Management and Systems, 22, 1, 59-70.
34. Shukla, D., Bankey, A. and Trivedi, M.(2002): Estimation in post-stratification using prior information and grouping strategy, Ind. Soc. Ag. Stat., 55, 2, 158-173.
35. Shukla, D., Singh, V.K. and Singh, G.N.(1991): On the use of transformation in factor type estimator, Metron, 49 (1-4), 359-361.
36. Shukla, D., Trivedi, M. and Singh, G.N. (2006): Post-stratification two-way deeply stratified population, Statistics in Transition, 7, 6, 1295-1310.
37. Singh G.N. and Singh V.K.(2001): On the use of auxiliary information in successive sampling, Jour. Ind. Soc. Ag. Stat., 54(1), 1-12.
38. Singh, D. and Choudhary, F.S.(1986): Theory and Analysis of Sample Survey Design, Wiley Eastern Limited, New Delhi.
39. Singh, H.P.(1986): A generalized class of estimators of ratio product and mean using supplementary information on an auxiliary character in PPSWR scheme, Guj. Stat. Rev., 13, 2, 1-30.
40. Singh, H.P. and Upadhyaya, L.N. and Iachan, R.(1987): Unbiased product estimators, Guj. Stat. Rev., 14, 2, 41-50.
41. Singh, S. and Horn, S.(2000): Compromised imputation in survey sampling, Metrika, 51, 266-276.
42. Singh, V.K. and Shukla, D.(1987): One parameter family of factor type ratio estimator, Metron, 45 (1-2), 273283.
43. Singh, V.K. and Shukla, D.(1993): An efficient one-parameter family of factor type estimator in sample survey, Metron, 51, 1-2, 139-159.
44. Singh, V.K. and Singh, G.N. (1991): Chain type estimator with two auxiliary variables under double sampling scheme, Metron, 49, 279-289.
45. Singh, V.K., Singh, G. N. and Shukla, D.(1994): A class of chain ratio estimator with two auxiliary variables under double sampling scheme, Sankhya, Ser. B., 46(2), 209-221.
46. Smith, T.M.F.(1991): Post-stratification, The Statisticians, 40, 323-330.
47. Sukhatme, P.V., Sukhatme, B.V., Sukhatme, S. and Ashok, C. (1984): Sampling Theory of Surveys with Applications, Iowa State University Press, I.S.A.S. Publication, New Delhi.
48. Wywial, J.(2001): Stratification of population after sample selection, Statistics in Transition, 5, 2, 327-348.

## Appendix A

Population I ( $\mathrm{N}=180$ ) R-group: ( $\mathbf{N}_{1}=100$ )

| $\mathbf{Y :}$ | 110 | 75 | 85 | 165 | 125 | 110 | 85 | 80 | 150 | 165 | 135 | 120 | 140 | 135 | 145 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{X}:$ | 80 | 40 | 55 | 130 | 85 | 50 | 35 | 40 | 110 | 115 | 95 | 60 | 70 | 85 | 115 |
| $\mathbf{Y}:$ | 200 | 135 | 120 | 165 | 150 | 160 | 165 | 145 | 215 | 150 | 145 | 150 | 150 | 195 | 190 |
| $\mathbf{X}:$ | 150 | 85 | 80 | 100 | 25 | 130 | 135 | 105 | 185 | 110 | 95 | 75 | 70 | 165 | 160 |
| $\mathbf{Y}:$ | 175 | 160 | 165 | 175 | 185 | 205 | 140 | 105 | 125 | 230 | 230 | 255 | 275 | 145 | 125 |
| $\mathbf{X}:$ | 145 | 110 | 135 | 145 | 155 | 175 | 80 | 75 | 65 | 170 | 170 | 190 | 205 | 105 | 85 |
| $\mathbf{Y}:$ | 110 | 110 | 120 | 230 | 220 | 280 | 275 | 220 | 145 | 155 | 170 | 195 | 170 | 185 | 195 |
| $\mathbf{X :}$ | 75 | 80 | 90 | 165 | 160 | 205 | 215 | 190 | 105 | 115 | 135 | 145 | 135 | 110 | 145 |
| $\mathbf{Y}:$ | 180 | 150 | 185 | 165 | 285 | 150 | 235 | 125 | 165 | 135 | 130 | 245 | 255 | 280 | 150 |
| $\mathbf{X :}$ | 135 | 110 | 135 | 115 | 125 | 205 | 100 | 195 | 85 | 115 | 75 | 190 | 205 | 210 | 105 |
| $\mathbf{Y}:$ | 205 | 180 | 150 | 205 | 220 | 240 | 260 | 185 | 150 | 155 | 115 | 115 | 220 | 215 | 230 |
| $\mathbf{X}:$ | 110 | 105 | 110 | 175 | 180 | 215 | 225 | 110 | 90 | 95 | 85 | 75 | 175 | 185 | 190 |
| $\mathbf{Y}:$ | 210 | 145 | 135 | 250 | 265 | 275 | 205 | 195 | 180 | 115 |  |  |  |  |  |
| $\mathbf{X :}$ | 170 | 85 | 95 | 190 | 215 | 200 | 165 | 155 | 150 | 175 |  |  |  |  |  |

## NR-group: $\left(\mathbf{N}_{2}=80\right)$

| $\mathbf{Y :}$ | 85 | 75 | 115 | 165 | 140 | 110 | 115 | 13.5 | 120 | 125 | 120 | 150 | 145 | 90 | 105 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{X :}$ | 55 | 40 | 65 | 115 | 90 | 55 | 60 | 65 | 70 | 75 | 80 | 120 | 105 | 45 | 65 |
| $\mathbf{Y :}$ | 110 | 90 | 155 | 130 | 120 | 95 | 100 | 125 | 140 | 155 | 160 | 145 | 90 | 90 | 95 |
| $\mathbf{X}:$ | 70 | 60 | 85 | 95 | 80 | 55 | 60 | 75 | 90 | 105 | 125 | 95 | 45 | 55 | 65 |
| $\mathbf{Y :}$ | 115 | 140 | 180 | 170 | 175 | 190 | 160 | 155 | 175 | 195 | 90 | 90 | 80 | 90 | 80 |
| $\mathbf{X :}$ | 75 | 105 | 120 | 115 | 125 | 135 | 110 | 115 | 135 | 145 | 45 | 55 | 50 | 60 | 50 |
| $\mathbf{Y :}$ | 105 | 125 | 110 | 120 | 130 | 145 | 160 | 170 | 180 | $\cdots 145$ | 130 | 195 | 200 | 160 | 110 |
| $\mathbf{X :}$ | 65 | 75 | 70 | 80 | 85 | 105 | 110 | 115 | 130 | 95 | 65 | 135 | 130 | 115 | 55 |
| Y: | 155 | 190 | 150 | 180 | 200 | 160 | 155 | 170 | 195 | 200 | 150 | 165 | 155 | 180 | 200 |
| $\mathbf{X :}$ | 115 | 130 | 110 | 120 | 125 | 145 | 120 | 105 | 100 | 95 | 90 | 105 | 125 | 130 | 145 |
| $\mathbf{Y :}$ | 160 | 155 | 170 | 195 | 200 |  |  |  |  |  |  |  |  |  |  |
| $\mathbf{X :}$ | 120 | 115 | 120 | 135 | 150 |  |  |  |  |  |  |  |  |  |  |

Appendix B

## Population II ( $\mathrm{N}=150$ )

R-group ( $\mathrm{N}_{1}=\mathbf{= 9 0}$ )

| $\mathbf{Y :}$ | 90 | 75 | 70 | 85 | 95 | 55 | 65 | 80 | 65 | 50 | 45 | 55 | 60 | 60 | 95 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{X :}$ | 30 | 35 | 30 | 40 | 45 | 25 | 40 | 50 | 35 | 30 | 15 | 20 | 25 | 30 | 40 |
| $\mathbf{Y :}$ | 100 | 40 | 45 | 55 | 35 | 45 | 35 | 55 | 85 | 95 | 65 | 75 | 70 | 80 | 65 |
| $\mathbf{X :}$ | 50 | 10 | 25 | 25 | 10 | 15 | 10 | 25 | 35 | 55 | 35 | 40 | 30 | 45 | 40 |
| $\mathbf{Y :}$ | 90 | 95 | 80 | 85 | 55 | 60 | 75 | 85 | 80 | 65 | 35 | 40 | 95 | 100 | 55 |
| $\mathbf{X :}$ | 40 | 50 | 35 | 45 | 35 | 25 | 30 | 40 | 25 | 35 | 10 | 15 | 45 | 45 | 25 |
| $\mathbf{Y :}$ | 45 | 40 | 40 | 35 | 55 | 75 | 80 | 80 | 85 | 55 | 45 | 70 | 80 | 90 | 55 |
| $\mathbf{X :}$ | 15 | 15 | 20 | 10 | 30 | 25 | 30 | 40 | 35 | 20 | 25 | 30 | 40 | 45 | 30 |
| $\mathbf{Y :}$ | 65 | 60 | 75 | 75 | 85 | 95 | 90 | 90 | 45 | 40 | 45 | 55 | 60 | 65 | 60 |
| $\mathbf{X :}$ | 25 | 40 | 35 | 30 | 40 | 35 | 40 | 35 | 15 | 25 | 15 | 30 | 30 | 25 | 20 |
| $\mathbf{Y :}$ | 75 | 70 | 40 | 55 | 75 | 45 | 55 | 60 | 85 | 55 | 60 | 70 | 75 | 65 | 80 |
| $\mathbf{X :}$ | 25 | 20 | 35 | 30 | 45 | 10 | 30 | 25 | 40 | 15 | 25 | 30 | 35 | 30 | 45 |

NR-group ( $\mathrm{N}_{2}=60$ )

| Y: | 40 | 90 | 95 | 70 | 60 | 65 | 85 | 55 | 45 | 60 | 65 | 60 | 55 | 55 | 45 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| X: | 10 | 30 | 30 | 30 | 25 | 30 | 40 | 25 | 15 | 20 | 30 | 30 | 35 | 25 | 20 |
| Y: | 65 | 80 | 55 | 65 | 75 | 55 | 50 | 55 | 60 | 45 | 40 | 75 | 75 | 45 | 70 |
| $\mathbf{X :}$ | 35 | 45 | 30 | 30 | 40 | 15 | 15 | 20 | 30 | 15 | 10 | 40 | 45 | 10 | 30 |
| Y: | 65 | 70 | 55 | 35 | 35 | 50 | 55 | 35 | 55 | 60 | 30 | 35 | 45 | 55 | 65 |
| X: | 30 | 40 | 30 | 10 | 15 | 25 | 30 | 15 | 20 | 30 | 10 | 20 | 15 | 30 | 30 |
| Y: | 75 | 65 | 70 | 65 | 70 | 45 | 55 | 60 | 85 | 55 | 60 | 70 | 75 | 65 | 80 |
| $\mathbf{X :}$ | 30 | 35 | 40 | 25 | 45 | 10 | 30 | 25 | 40 | 15 | 25 | 30 | 35 | 30 | 45 |

